

AVT-340 Research Workshop on Preparation and Characterization of Energetic Materials

Small-scale tests applied to the characterization of explosives

Multi-Channel Optical Analyzer MCOA-UC

R. Mendes, J. Góis and J. Baranda University of Coimbra, ADAI PORTUGAL

09-02-2021

Experimental tests instrumented with the MCOA-UC

• DRZ Performance Test

- Spatially-resolved simultaneous measurements of reaction localizations in detonation front, local speed of detonation front, detonation front curvature and 3D-shock field at interface with optical monitor.

• Shock sensitivity tests

- Failure Cone Test
- Wedge Test
- Kinetic Rate/Reaction Radiance
- Single Crystal Shock Reactivity Tests (Crystal-in-binder)

• Other tests

- Corner turning test
- Collision of detonation wave Test

Experimental tests instrumented with the MCOA-UC

- Very small amount of test material is required for tailoring PBXs on shock sensitivity and DRZ performance, less than 10g;

- Experimental results obtained with MCOA-UC allows to charcaterize the shock and detonation wave mechanisms at meso-scale level;

- These techniques have particular interest in the study of crystalline explosives: due to the characteristic small-scale heterogeneity and anisotropy of polymer bonded explosives (PBXs), the reaction dynamics exhibit inhomogeneities and local detonation intensity perturbations;

MCOA - UC

- Multi-Fiber Optical Probe (MFOP-96)
 - Multi-Mode PMMA Fiber Optic Array
 - Spatial Resolution: 250µm
- High-Speed Electronic Streak Camera
 - Model: Thomson TSN 506 N
 - Temporal Resolution: ~1ns

Long charge test - I

Long charge test - I

Long charge test - I

Long charge test - I

RS-PBX: RC-HMX/UF HMX/HTPB 68/17/15 wt. %

Reference PBX: HMX Ref/ HMX Fine /HTPB

68/17/15 wt. %

- Micro-craters are much more easily identifiable on the PBX-Ref plate than on the RS-PBX.
- On PBX-Ref, craters are clearly "deeper": lighting conditions are identical in both microphotos and present an elevated "rim".
- In case of the PBX-Ref, the number of craters is also greater and they occupy a larger portion of the sample surface than in the RS-PBX.
- The DRZ-induced perturbations are smaller in case of RS-PBX than in PBX Ref

Long charge test

• Witness Plate (Copper Insert) Surface Analysis

Long charge test -II

- Spatially-resolved registration of the DRZ-localizations was performed with application of 96channel optical analyzer MCOA-UC.
- Bright spots are corresponding to high-Temperature localizations;
- Reaction localizations produce significant perturbations in the boundary layer of copperconfinement & PBX-driven liner (recovered copper-confinement is shown in the right image)

Sal

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

Long charge test - II

- In case of porous PBXs, when p0 ≥ 0.96 TMD, the gaseous micro-voids (porosity) contribute to the reaction localizations in the DRZ via the radiation of shock-compressed gas, whereas Jetting from micro-voids plays a minor role in general ejecta pattern.
- In case of polycrystalline explosive materials and PBXs, reaction localizations in the DRZ and ejecta are caused by the kinetic non-equilibrium between the coarse particles and "dirty binder".

Single crystal reaction test

• Defect structure of surface layer in β -HMX crystals from fractions 595 μ m < d < 707 μ m.

- a) β -HMX crystal from fraction 595 μ m < d < 707 μ m: d _{mean} = 652 μ m; ρ_0 = 1.896± 0.019 g/cm³; ν = 2,8 [vol. %]
- b) Surface structure in vertex zone: defects, incrustations, fissures,...
- c) Central core: highly homogeneous structure; $u \approx 0$

Single crystal reaction test

Single crystal reaction test

Failure Cone Test

Detonation Failure Diameter is a measure of detonability of crystalline HE [Dremin, 1997]

HMX particles

"Ref. HMX(114 μ m)" Ref. HMX Class-1 military grade (Dyno Nobel) Mono-modal (PSD): d₅₀ =114,408 μ m ρ_0 = 1.881 \pm 0.006 g/cm³

"RC-HMX(130.9µm)"

Fraunhofer ICT re-crystallization Mono-modal PSD: $d_{50} = 130,925 \ \mu m$ $\rho_0 = 1.892 \pm 0.006 \ g/cm^3$

Plaksin et. al, Insensitive munitions and energetic materials Tech. Symp., 2012

HMX particles

Particles P04: "F-HMX (11.1 µm)"

obtained at Fraunhofer ICT -Rotor-Stator Milling technology [1], particles P01 used as a row material Mono-modal PSD: $d_{50} = 11.06 \ \mu m$ $\rho 0 = 1.874 \pm 0.008 \ g.cm^{-3}$

UF-particles P05: "UF-HMX (1.6)"

comminuting the water slurry of P04-grains on "Annular Gap Ball-Mill" technology (Fraunhofer ICT [1]) Mono-modal PSD: $d_{50} = 1.64 \ \mu m$ $\rho 0 = 1.933 \pm 0.005 \ g/cm^{-3}$

P05-particles are almost free of substructures and seems clusters separated from the crystal body at milling.

 Energetic Materials: Particle Processing and Characterization (Ulrich Teipel, Ed.), Wiley-VCH Verlag, GmbH & Co. KGaA, ISBN: 3-527-302240-9, 2005, 43-46.
Plaksin et. al, Insensitive munitions and energetic materials Tech. Symp., 2012

Failure Cone Test

energetic materials Tech. Symp., 2012

The RS-PBX "**F04 = P03/P05/HTPB 65.6/16.4/18 wt.%**" is possessing the Detonation Failure diameter on the level of the purified TATB (4 mm, 1.860 g.cm⁻³) explosive material of 0.97 TMD.

Wedge test

Wedge test

#7: HMX (203.7 μm)/DNAM(7.98μm)/GAP 65.6/16.4/18 wt. %"

31 FF, $\Delta Z = 180.227 \,\mu m$

#6: HMX (203.7 μm)/HMX (10.4 & 56 μm)/ GAP = 65.6/16.4/18 wt. %"

 $32 \text{ FF}, \Delta Z = 176.192 \ \mu \text{m}$

Wedge test

AVT-RWS-340

SCIENCE AND TECHNOLOGY ORGANIZATION organization

Flyer plate impact - SDT

NORTH ATLANTIC TREATY ORGANIZATION

Flyer plate impact - SDT

Flyer plate –Polyester,Thickness -350 μm

PBX: 85% RDX - 15% HTPB

Conclusions

- DRZ Performance Test; Single Crystal Shock Reactivity Tests; Wedge Test; Detonation Failure Cone Test and Flyer plate impact test both instrumented with *Multi-Channel Optical Analyzer MCOA-UC* produce quantitative data on DRZ and sensitivity of crystalline PBX-samples.
- Small-scale tests allow to identify non-Steady State Detonation Propagation (local reaction domains/cells and "hotspots"); evidence of significcant perturbations in reaction intensity and induced pressure fields; ejecta phenomena on detonation front roughness.

Thank you for your attention!

ricardo.mendes@dem.uc.pt

Igor Plaksin will be remembered forever by his colleagues as an outstanding scientist and a great friend.

Acknowledgments: The authors would like to thank

- ONR Office of Naval Research
- Portuguese MoD